
Journal of Statistical Physics, Vol. 73, Nos. 1/2, 1993 

Phases of the Number-Theoretic 

Andreas Knauf 1 
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Spin Chain 

We present numerical and analytical evidence for a first-order phase transition 
of the ferromagnetic spin chain with partition function Z(fl) = ~(fl- 1)/((fl) at 
the inverse temperature tier = 2. 
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In a recent paper  (6) we established a link between analytic number  theory 
and classical statistical mechanics  by interpret ing the quot ient  

Z ( s )  = ~(s - 1 )/~(s) 

of Riemann  zeta functions as the par t i t ion function of an infinite spin chain 
with fer romagnet ic  interactions. For  R e ( s ) > 2  the quot ient  has the 
Dirichlet series representa t ion 

Z(s)= ~ ( p ( n ) . n  " (1) 
n = l  

where for n >~ 1 the Euler  totient function ~o(n) is defined to be the number  
of positive integers not  exceeding n which are relatively pr ime to n [ tha t  is, 
~o(n) = # { i t  {1,..., n} Igcd(i, n) = 1 }]. N o w  on any half-plane of the form 
Re(s)  > 2 + e, e > 0, Z is uniformly approx ima ted  by par t i t ion functions 

Zk ( s )  := ~ e x p [ - s . H C ( c r ) ]  
o-~ Gk 

1 Technische Universit~it, Fachbereich 3, Mathematik, MA 7-2, D-10623 Berlin, Germany. 

423 

13022-4715/93/1000-0423507.00/0 �9 1993 Plenum Publishing Corporation 



424 Knauf 

with Gk := ({0, 1}) k, k 6 N o ,  and canonical energy function Hk c := In h c. 
The coefficients c hk(a), a = ( a l  ..... ak)eGk,  are defined inductively by 
setting h0C(0):= 1, 

c hC(a) and c c h c hk+l(a, 0 ) :=  hk+l(a, 1 ) : = h ~ ( a ) +  k(1-o-)  

with l - a - =  ( I -a1 , . . . ,  1-(rk).  
For example, for k = 3  we have h3C(000)= 1, h C ( 0 0 1 ) = h C ( l l l ) = 4 ,  

h3C(010) = hC(110) = 3, h3C(011 ) = h3C(t01 ) = 5, and h3C(100) = 2. 
Writing 

Zk(s)= ~ (pg(n).n -s 
t t = l  

with q~k(n )=#{aEGklh~ ' ( a )=n}  

we have Ok(n) <<. q~k + 1(n) <<- ~o(n). 
For functions f on the additive group G k w e  define the Fourier 

transform ~ f  by 

( ~ f ) ( t ) : = 2  -k ~ f(a)-(-1) ~ t6G* 
a~Gk 

We call the coefficients 

j c ( t )  := --(~kHC)(t) 

of the Fourier transform of - H  c the canonical interaction coefficients. 
Then the canonical energy function H c is the negative inverse Fourier 
transform ofjC: 

H C ( a ) = -  ~ j c ( t ) . ( - - 1 ) ~  
a~Gk 

We use the unconventional spin values o- i~ {0, 1} instead of 
( -1 ) " iE  { 1, - 1  }, since then the strings a = (o"1,..., a , )  can be interpreted as 
the dyadic representations of the integers between 0 and 2 k -  1. (6) 

Similarly, we consider the grand canonical interaction coefficients 
j ~ ( t )  := - ( ~ H ~ ) ( t )  of the grand canonical energy functions H ~ ( a ) : =  

1). 
Let # ~ ( t ) : = # { i ~ { 1  ..... k } [ t i = l }  denote the number of ones 

appearing in t = ( t l  ..... tk). Then the coefficients j c ( t )  with # k ( t ) = l  
describe the couplings of the individual spins to an external magnetic field, 
and for # k(t)= 2 the interaction coefficients are the strengths of the pair 
interactions. 
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In ref. 6 we proved several results on the form of the interaction: 

1. The multibody interactions (i.e., # k ( t ) >  2) are nonzero in general. 
Nevertheless, for the grand canonical ensemble we have 

j ] ( t ) = O  for # k ( t ) = o d d  

In particular, there is no external magnetic field for the grand canonical 
ensemble. 

The grand canonical ensemble is mirror-symmetric, that is, 

" G  . G  Jx(tl,..., tk)=Jk(tk,...,  tl) 

2. The interaction coefficients are asymptotically translation 
invariant in the sense that the difference j ] +  1(0, .G t ) - j ~ + l ( t ,  0) is small in 
absolute'value if both 1 and k - r are large for t ~ G* of the form 

t -  (tl ..... tk) = (0 ..... 0, 1, tz+l ..... t r_ l ,  1, 0 ..... 0): 

ij~+l(O, .G t) - J k +  ~(t, 0)[ < (2 - r  + 2 t-(k+ l~) In 2 

3. The interaction stabilizes in the thermodynamic limit k--+ 0% 
namely for t e G~ '+ l \ {0}  with an even number # , + l ( t )  of ones and 

t -  = (tl,..., tk+~) = (tl,..., t r_l ,  1, 0,..., 0) 

we have 
�9 G " G  I Jk+ 1(tl, ..., tk+ 1) -J , ( t ; , . . . ,  t,+ 1)1 < 21 r In 2 

4. The individual canonical interaction coefficients are bounded from 
above by 

jC(t)<~2-(r +)+1ln2 for # k ( t ) = e v e n  

jc( t )~<2 (k-01n2 for # ~ ( t ) = o d d  

respectively. So the odd canonical interactions are small except for those 
involving only spins near the right edge of the chain. The canonical inter- 
action coefficients for an even number of spins decay exponentially with the 
maximal distance r - l of spins involved. 

5. This exponential decay estimate is not enough to guarantee the 
existence of a thermodynamic limit of the free energy, since the number of 
interaction coefficients grows with the same exponential rate. To describe 
the falloff of the potential, we consider for l, r, k ~ N and 1 ~< l < r ~< k the 
functions 

G Ak(l, r):= ~ .G Jk(0 ..... 0, 1, tt+l ..... t~_l, 1, 0,..., 0) 
( t l+l , . . . , tr  1) 
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and similarly for the canonical ensemble. We obtain the estimate 

Ak(l,r)<~ ~ (2) 

that is, a quadratic decay with the maximal distance of spins involved. 
Generally speaking, for one-dimensional spin systems we need a decay 

rate which is faster than ( r - I )  -1 in order to guarantee the existence of a 
thermodynamic limit. 

On the other hand, extending a result of van Hove, Ruelle ~8) showed 
that for systems with a faster than second power decay of the potential no 
phase transition occurs (the Gibbs measure depending continuously on the 
temperature). So w.r.t, phase transitions we are in a borderline situation. 

6. The system is ferromagnetic in the sense that for all k e No 

jc(t)>>,O and j](t)>~O for all t ~ 0  

This fact is remarkable insofar much more is known about ferromagnetic 
spin systems than about nonferromagnetic ones (GKS inequalities, Lee- 
Yang theorem, etc.). So there is some hope that one may prove new results 
on Riemann's zeta function by applying ideas from statistical mechanics. 

The interested reader should consult refs. 6 and 7 for more information. 
See also the related work of Bost and Connes ~) on Hecke C*-algebras and 
the Riemann zeta function. 

Among the thermodynamic quantities describing a spin chain of length 
k there are the density F~ of the free energy, the expectation value Uk of 
the energy density, and the mean magnetization Mk. These quantities are 
defined by 

1 
Fk(fi) := - - - -  ln(Zk(fl) ) ~.k 

1 
Uk(fl) :=~ (H~)k (fl) 

and 

with #~:= ( -  1) ~' and 

i = 1  

1 
(G)k (fl):-=Zk(fl) ~ G(a) exp[--f l 'HC(a)]  

a e G k  
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denoting the expectation of a variable G for the Gibbs ensemble of the spin 
chain of length k at inverse temperature ft. 

Note that the ferromagnetic property and the GKS inequalities imply 

d 
Mk(fl) >~ 0 and -~ Mk(fi) >~ 0 for all k e N 

Moreover, for f l>2  we have for ie{1,...,k} the k-independent 
estimate 

(/z~) k (fi)> 1 - ~ 2  (i+ 1) 2-~ (3) 

which follows from 

(Ui)~ (9)=  1 - 2  

i > 1 - 2  

Zo~a,  , 2 ~ a , _ , e x p [ - f l H C ( p ,  1, ~)] 

z,(/~) 

(P(n) "n-  ~ 
n = i + 2  

n 1 - B  

n = i + 2  

> 1 - 2  

> 1 - 2  n*-a dn 
= i + 1  

since Zk(fl) ~> 1 and oh(n) ~< (p(n) ~< n. 
For fl > 2 both Fk(fl) and Uk(fl) tend to zero in the thermodynamic 

limit k---,oo, since the series (1) is absolutely convergent and since 
Uk(fi) = (d/d~)(flFk(fl)). Estimate (3) implies 

M(fl) := lim Mk(fl)= 1 
k ~ c o  

On the other hand, in the large-temperature limit we have 

(4) 

lira fi-Fk(fl) = - - ln  2 (5)  

independent of k. So at least for one inverse critical temperature fl°r with 
0 < f l , ~ 2  a phase transition (i.e., point of nonanalyticity of the free 
energy) occurs. 

We can easily obtain a better lower estimate for t i e r  by the following 
argument: 

--~Fk(fl)=~ n t +  ~ Z~(fl) 
l = 0  
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with grand canonical partition function 

Z~(/3) := ~ exp[- /3H~(o-) ]= 
~ G /  ~ G  l 

for h i ( a ) : =  exp[H](a)] .  Moreover, 

and 

[h~(~)]-~ 

h i ( a )  = h~C+ l(a, 1) = h~C(a) + hC(l  - a)  

h~+ 1(o, 0) : 2h~(a) + h~C(1 - a) 

h~+ l(a, 1) = hC(a) + 2hf(1 - a) 

In ref. 7 we proved the existence of the thermodynamic limit 

F(/3) := lim Fk(/3) 
k ~ o o  

(6) 

(7) 

(8) 

By concavity of ft. F(fl) the thermodynamic limit U(fl) of Uk(fl) exists for 
almost all fl and is monotone decreasing. 

We already know that F(fl)=O for fl>~2. Thus for f l>2  we have 
U(fl)=0, too. In other words, the system is in a frozen state for low 
temperatures, having mean magnetization M(fl)= 1 by (4). 

For high temperatures (/3<2) the analytic continuation of Z(/3) 
cannot be directly interpreted as the partition function of the infinite 
chain. There, limk~ ~ Zk(fl)= ~ ,  SO that the partition functions of the 
finite chains do not converge to Z(/3). 

Nevertheless, the free energy F(/3) of the infinite chain is well-defined. 
Here we show that 

-fiF(fi) ~ In 2 - fi-In 3/2 

which implies the existence of a phase transition at some 

In 2 
tier > / ~  ~ 1.709 

ln~/z 

Estimate (9) follows from the inequality 

z,~(/3) 

which in turn follows from the estimates 

[hi l l (a ,  0)l g-I-[-h]+l(a, 1)]-a>~2.{3"~-a 
[h,~(~)] - ,  

for all 

(9) 

a 6 G l  (10) 
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But by (6)-(8) the 1.h.s. of (10) has the form 

(2d+ 1) -~+ (d+2)  -~ 
f(d,  fl) := ( d + l )  - '  

with d := hC(a)/hC(1 - a). 
As a function of d, f(d,  fl) has its absolute nondegenerate minimum at 

d =  1, and f(1, f l )=2-(3/2)  ', proving (10). 
The inequality (9) together with the concavity of fiF(fi) and F(2)= 0 

imply 

d In 2 - f l  ln(3/2) In 2 
U(fi)=~[flF(fi)]>>- 2 -  fl for f l~<- - ln  3/2 (11) 

On the other hand, (9), the concavity of flF(fl), and (5) imply 

U(fl) <~ U(O) <~ In 3/2 ~ 0.405 

Numerically the first traces of a phase transition can be seen for chains 
of lengths ~ 100. Since there are 2 k configurations, the sums appearing in 
the above definitions of the thermodynamic quantities had to be evaluated 
approximately, using the Metropolis algorithm of the Monte Carlo 
method. 

Interpreting the numerical results, it seems likely that for fl~r = 2 a 
first-order transition occurs, the magnetization M(fi) of the infinite chain 
going discontinuously from one to zero as one enlarges the temperature 
(Fig. 1). 

600 spins 

0 ~ 

-1 ' i i , i i i I i , i , i 

1.2 2 2.7 

beta 

The mean magnetization Mk(fl) as a function of the inverse temperature fl for k = 600 
spins. 

Fig. 1. 
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600 spins 
0 . 4  . . , . . . .  ~ . . . . . .  

0.3 

o,2 

0,1 

0 
1 . 2  2 2 . 7  

beta 

Fig. 2. The density Uk(fl) of the inner energy and the lower bound (11). 

Similarly, the energy density U(fl), being zero for fl > 2, seems to rise 
sharply from zero to a positive value at flor = 2 (Fig. 2). 

In order to control the precision of the approximation a full tem- 
perature cycle from fl = 1.2 up to fl = 2.7 and then back to f l=  1.2 was 
calculated. The two curves in Fig. 1 show no hysteresis, so that the 
appearance of metastable states is unlikely. 

Figure 3 shows two typical configurations (that is, configurations 
generated by the Metropolis algorithm) for temperatures just below, 

111111111101100010001111101110110000100001111111110111000000 
000000000000000000000000000000000011000000100101100000111111 
001111101110000110100011111111111111111111111111111111111111 
111111111111111111011111111111110111101110011111010000000110 
111000000000000000000000000010010011000000000000000000000000 
000000000011100011111010000111110111111111111111111000110111 
111100000011100011111111111100000100100101111110010111111110 
101110011111111110101101100000010101101111111111111101111111 
111111111111111111111111111000010111100010000000000000000111 
111110001111111101000000011111110111001111110000000000000000 

b) 

110100010000011100000010001001111010000101110100010001111110 
101101001101111111111000111111111111101000000000000000000000 
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000 

Fig. 3. Typical configurations for (a)/3 = 1.95 and (b) fl = 2.05. 
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respectively above, the critical temperature.  In the magnetic phase, the 
inverted spins with a,- = 1 tend to concentrate  on the 1.h.s. of  the spin chain 
(for/~ = 2.05 the configurat ion shown has tr i = 0 for i > 99). 

In  fact, the r ightmost  posit ion r of  a spin with a r =  1 can be inter- 
preted as the particle number  of  that  configurat ion in the grand canonical  
ensemble. In  the the rmodynamic  limit, the expectation value of that  
particle number  is finite for/~ > 2 but diverges as/~ "~ 2. 

The type of  phase transit ion which is observed numerically is similar 
to the one discussed by Thouless (9) for the Anderson model  and by 
Dyson(4.5) for other  ferromagnetic chains with long-range interactions. 

More  recently, Aizenman etal .  ~1'2) studied one-dimensional  models 
with 1 / ( x - y ) 2  decay of the interaction, proving discontinuity of  the 
magnet izat ion and giving bounds  for the critical temperature. In our  
context, however, one must  use the specific form of the energy function in 
order  to prove the above conjectures on the phase transition. 
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